A TCP Interface for Heterogeneous Cross-Layer Awareness

k
Siddharth Santurkar
Carnegie Mellon University
5000 Forbes Ave
Pittsburgh, PA, 15213

ssanturk@cs.cmu.edu

ABSTRACT

With increasing energy efficiency requirements of modern
computing devices, one of the main culprits of energy use
are the network devices that connect them all together.
Through this project, we have made software more friendly
to the power saving modes of the hardware. We have im-
plemented custom logic to the common Linux kernel TCP
socket to allow applications to state their delay tolerance
in their network communications. This allows hardware (or
other software) to choose the appropriate times for packets
to be sent by TCP, while still meeting the delay requirements
of applications. Through our tests, we’ve observed that we
can improve energy efficiency through less hardware wake-
ups on simple common scenarios. We further elaborate on
the potential for future work in this area.

1. INTRODUCTION

The pursuit of performance and the pursuit of energy ef-
ficiency are deeply intertwined. Often, engineering choices
present themselves as trade-offs between these two pursuits.
Through our readings in 15-744, we have seen the need for
both performance and energy efficiency pervasive in every
element of the global network. The difficulty in modifying
network elements like routers and switches has led us to
pursue end-client improvements.

With today’s difference in clients and link-layer technolo-
gies, the only common element seems to be the TCP proto-
col and the common Linux kernel that carries it. Improving
the TCP stack of the Linux kernel, be it performance-wise
or energy-wise, has the potential of a massive impact on
network devices in use today.

We have proceeded to explore common scenarios that lead
to sub-par power efficiency in Linux and explored options
to improve it; a detailed explanation and definition of this
problem is available in Section 2 of this report. The rest of
the paper is organized as follows: Section 3 outlines the ap-
proach we took to solve this problem. Section 4 explains the
simulation path we explored. Section 5 explains the Linux
kernel path we explored and finally settled on. Section 6
presents some of the results we obtained through our modi-
fications to the Linux kernel. Section 7 concludes this paper
with a retroactive look at our work. Section 8 explores the
related work done in this field. Section 9 explains the future
work that may be done.

*The order of names were decided through a friendly coin
flip.

Ahmet Emre Unal
Carnegie Mellon University
5000 Forbes Ave
Pittsburgh, PA, 15213

aemreunal@cmu.edu

2. PROBLEM DEFINITION

Mobile computing and Internet-of-Things devices raised
the bar substantially for the need for power-efficiency, of-
ten through the sacrifice of performance. Network Interface
Cards (NICs) on mobile devices impose strict power saving
requirements on the operating system and the applications
that are running on them. It should be noted, however,
that the abstraction presented to each application running
on these mobile devices cause them to behave in the same
way when interacting with these NICs, regardless of their
requirements, often causing sub-par power efficiency or ex-
tensive application-level network logic.

We started by exploring the different performance require-
ments of applications an email client has a different net-
working performance requirement than an interactive appli-
cation; it is often the case that an email client can afford
delays in its communication. The current Linux network-
ing stack responds very actively to each packet, sending the
packets by waking up the NIC even if the NIC is in power
saving mode. This leads to substantial drops in power effi-
ciency in some devices [14]. The ideal case would be to keep
these packets from going to the network (which prevents the
NIC from waking up) and sending them once the NIC wakes
up on its own, signaling the OS.

3. SOLUTION APPROACH

Once we understood the presence of this problem, we
proceeded to explore options to selectively delay packages
in TCP layer for a certain amount of time, based on the
needs of applications. Catering a general purpose solution
for every application’s need was not feasible, neither was
predicting each application’s needs. We have, therefore,
settled on allowing each application to state their require-
ments, through a new socket flag (alongside the common
BSD socket flags). With this flag, an application can state
the deadline requirements of a socket in terms of how many
milliseconds of delay it can afford.

In broad strokes, our project was introducing an API to
the TCP layer in the Linux Kernel where the OS maker
could define an arbitrary metric to deem the state appro-
priate for packets being sent out. If such an appropriate
time did not come by the time the deadline stated by the
application was reached, the TCP layer were to process and
forward the buffered packets to the network layer as if they
were just handed off by the application layer. This is best
explained by a couple of examples, using an email client as
an example for an application and different hardware states:

mailto:ssanturk@cs.cmu.edu
mailto:aemreunal@cmu.edu

e An NIC maker can invoke the push of the buffered
packets on every wake up of the network card. If,
for example, the network card wakes up every 100ms
(as is common for the BeaconPeriod of power-saving
mode (PSM) of the IEEE 802.11 wireless LAN spec-
ification) and the application states 500ms of delay
tolerance, the network card would cause the flush of
packets whenever it wakes up, without having the OS
wake it up. If, for some reason, this wake up doesn’t
happen before the deadline stated by the application,
the OS can go ahead and initiate the push of packets.

e An LTE module maker can tie the invocation of buffered
packets’ push to the signal strength. Essentially, pack-
ets can be buffered while signal strength temporarily
drops or is disrupted, then get pushed when it returns
to ‘acceptable’ levels (deemed by the LTE module and
the manufacturer’s specifications). This could lead to
power savings over the current approach of increasing
power levels when signal strength drops.

This approach allows each application to state their own
requirements, as well as have different requirements per each
socket in a single application. An email client can set up
its sockets as delay-tolerant up to several seconds, while an
SSH client can set its sockets as delay-tolerant only up to,
for example, a couple hundred milliseconds. A file-transfer
application can omit the use of our flag and can be as per-
formant as the underlying hardware and software allows it
to. Even in a single application, there might be different
sockets, each with different delay tolerance levels. We be-
lieve this approach allowed the most flexibility in application
performance and energy-friendliness.

Initially, we explored two avenues for the implementation
and testing of our approach. The authors simultaneously
worked on the network simulator ns-3 and the Linux ker-
nel. Our approach focused on introducing a layer between
TCP and IP, intercepting packets that have been processed
and sent by the TCP layer. The side-effects of such an
approach, namely this layer’s impact on TCP’s congestion
control and loss-recovery algorithms, were foreseen by the
authors. While the structure of ns-3 was more friendly to
this extra layer, the Linux kernel required extensive mod-
ifications to introduce it. Furthermore, the modifications
needed to be done on the aforementioned algorithms of TCP,
both for ns-3 and the Linux kernel were going to be very ex-
tensive. These two conditions led us to intercept packets
inside the TCP layer, before they have been processed by
these algorithms.

This second approach proved very fruitful for the kernel
path, as explained in Section 5, but not as fruitful for the ns-
3 path. The structure and philosophy of ns-3 is very different
from those of the Linux kernel and these modifications didn’t
prove very applicable on ns-3, as explained in Section 4.
Finally, we stopped working on ns-3 and focused our work
on modifying the Linux kernel.

4. SIMULATION
4.1 Layered Approach

Our initial approach involved introducing a layer between
the TCP and the IP layers in ns-3. The reasoning behind
was to identify the points where packets are done being pro-
cessed by the TCP layer and are handed off to the IP layer,

intercept the packets at that point and buffer them, thus
preventing packets from reaching the IP layer.

We achieved this goal by changing the aforementioned
hand-off function calls in the TCP layer. These hand-off
points, instead of handing the packets off to the IP layer,
handed the packets off to the intermediate layer we intro-
duced.

Prior to explaining the structure of this layer, an impor-
tant note should be made about the way ns-3 simulations
work: While a regular Linux kernel works through timers
and interrupts, ns-3 simulations work by scheduling events
that perform certain actions. For example, a regular kernel
will run TCP algorithms when packets are received (which
trigger a series of actions), while ns-3 will schedule events
such as packets being sent, packets being retrieved, time-
outs happening. These scheduled events do not happen in
real-time and the ns-3 scheduler can skip long intervals of
time, provided there are no events scheduled between said
interval.

The extra layer we introduced is structured and managed
as follows:

1. The test application decides to send a packet. The
application proceeds to write the bytes to the socket
it opened.

2. The socket receives the data, creates the TCP packet,
does its algorithmic processing. At some point, the
TCP layer decides it is time to push the packet to
the network (this decision comes through things like
receiving ACKs, window calculations, timeouts, etc.).
Anything that happens until this point is ‘vanilla’ TCP
implementation.

3. The TCP layer calls its functions to hand the packet
off to the IP layer, in order to push it to the network.

4. The packet reaches our layer, instead of the IP layer.
Our layer puts the packet in a buffer (structured as
a queue) and schedules, if not already scheduled by a
prior packet, a ‘push’ event for a certain amount of
time into the future.

5. Subsequent packets that arrive to our intermediate
layer are put to the back of the queue (so that packets
are sent out in a FIFO order).

6. When the scheduled event fires, all the buffered pack-
ets are sent out from our intermediate layer to the IP
layer?.

Further work needed to be done on modification of time-
out calculations to prevent pre-mature timeouts caused by
the increase in RTT perceived by the TCP layer. The time-
out calculations were to include the time the packet spent
being buffered in the intermediate layer. However, due to
the change in approach (the transition to buffering packets

!An important point to raise here is how pushing all the
packets affect network congestion. Since the packets have
been pushed out from the TCP layer after being subjected
to processing, they’ve been already accounted for in TCP’s
window calculations. Therefore, other than the burst effect
on network devices and IP layer buffers, the packets being
pushed do not have a substantial negative effect on network
congestion.

https://www.nsnam.org

when they reach the TCP layer but before they are pro-
cessed by TCP’s algorithms, as explained in Section 4.2),
this modification was not performed.

By having this intermediate packet buffer, the goal was to
simulate a similar entity in the Linux kernel.

4.2 In-TCP Approach

Newer TCP flavors, such as NewReno, employ many changes
over the ‘vanilla’ TCP they introduce new states such as fast
recovery. These states have different properties in window
and timeout calculations. After considering the number of
cases needed to be handled by the modifications needed for
the layered approach, a change in our approach altogether
seemed to be a better solution. Thus, we have changed our
approach: Instead of introducing a new layer between TCP
and IP layers, we were to modify the point where data is
handed off from the application to the TCP layer. The pack-
ets created from the data were to be held in TCP’s buffers
before TCP processed them with its window or timeout cal-
culations.

This approach were to allow us to prevent many of the po-
tential problems caused by the increase in RTT. However,
the modifications required for this approach had unexpected
effects on the scheduler of ns-3. Unexpected connection ter-
minations and crashes in simulation led us to focus more
on the Linux kernel after getting promising results from the
same approach on the kernel. Thus, this approach was never
implemented fully on ns-3.

5. THE LINUX KERNEL

The majority of our work went in to implementing the
desired API in the Linux kernel. There were certain compo-
nents that needed to come together for the API to function
as intended:

e A timer functionality, in order to create timers that fire
at (approximately) the desired time; used to create the
deadlines for the sockets.

e A BSD-like socket flag; used by applications when
opening a socket to indicate their deadline require-
ments.

e A list of sockets separate from the ones TCP uses in-
ternally; used to keep track of only the sockets that
use the optional flag we introduce.

e A custom system call that signals TCP to flush the
packets residing in the buffer of the sockets that use
our custom flag; used by applications or hardware to
signal the appropriate time to flush the blocked and
buffered packets in TCP to the network layer.

e Interception of select TCP output functions for syn-
chronization with our custom blocking timer.

The items were implemented in the order they were listed.
Together with our modifications, the custom sockets in the
Linux kernel’s TCP layer is structured and managed as fol-
lows:

1. An application opens a socket to send data to another
host. Along with the regular BSD-style socket flags,
the application uses the custom flag to set the delay
requirements of that specific socket. For example, in

Python scripting language, a client can open a socket
with a certain amount of delay as follows:

Custom socket flag int value

SOCKET_FLAG_NUM = 100

Define delay tolerance of the socket in ms

delayToleranceInMs = 5000 # 5 seconds of delay

Create a socket

fd = socket.socket(socket.AF_INET,
socket .SOCK_STREAM)

Set socket option

fd.setsockopt (socket.SOL_SOCKET, SOCKET_FLAG_NUM,
delayToleranceInMs)

. The TCP layer, in addition to setting up the regular

socket, also sets up additional data structures (like the
aforementioned additional list) and a socket-specific
timer to manage this socket’s buffered packets and
deadlines. The timer is set for the amount specified
in the flag

. When data is sent to the socket, a flag in the socket is

checked in order to decide whether to forward data to
the window or not. If the socket is currently blocked
(which is the default state for a custom socket), the
packets are buffered but the window calculations hap-
pen as if no data is present in the socket buffer. Es-
sentially, TCP algorithms are unaware data has been
sent.

. Either when our system call happens or when the timer

fires (thus signaling the deadline for the packets in
buffer), our algorithms proceed to traverse our cus-
tom sockets’ list and flushes their buffers one by one.
This results in all of the outstanding data in a custom
socket’s buffer to be flushed to TCP’s main algorithms
and gets included in the window calculations.

. When a new custom socket is opened, our algorithms

compare the deadline stated by this new socket against
the existing ones. The shortest deadline is chosen as
the single timer value (there is always a single timer,
no matter how many custom sockets are open) and the
timer is set. This is best explained with an example:

Assume that there is a single custom socket with a
5000ms delay tolerance. For the sake of argument,
assume no other sockets (custom or otherwise) or no
system calls being fired. This means that there is a
single 5000ms timer, firing and flushing said sockets
buffer every 5 seconds. Assume that a second socket is
created, with a deadline requirement of 2000ms. Our
code in the TCP layer: a) checks all the open sockets,
b) determines that the shortest deadline over all the
sockets is 2000ms, and c) cancels the existing timer of
5 seconds and schedules the new timer for 2 seconds.
Since the second socket’s deadline requirements will
cause the flush of its packets every 2 seconds (thus
waking up the entire networking stack and hardware),
it is only logical to also send the packets of the first
socket while everything is already awake.

If or when the second socket, with the 2000ms deadline
requirement, gets closed, the global timer is again can-
celed, our algorithms look through the existing custom
sockets, determines that the earliest deadline among

all the custom sockets is 5000ms and sets a new timer
for 5s. This approach leads to dynamic adjustment of
performance of our custom sockets.

The key part of this implementation is to synchronize
our delay timer with the the TCP output interface. Based
on our readings from [1], [2] and [3] we found that the
tcp-transmit_skb() function is the lowest level function in
TCP responsible for all output operations. Packets that
reach this function are expected to be transmitted right
away and are immediately tracked for timeouts and retrans-
missions. A preliminary approach was to buffer all pack-
ets that reached this call and asynchronously flush them on
timeout. However, this would require us to do additional
bookkeeping to avoid spurious timeouts or retransmissions.
For these reasons, we identified the following higher-level
functions that simplified interception:

1. void tcp_push() - This function traverses the queue
of buffered packets within the send window and flushes
them sequentially to the lower layers at
tcp_transmit_skb(). We intercept this function in or-
der to prevent transmission while the timer is active.
The void return type aids in not requiring to main-
tain any state across multiple calls to tcp_push(). As
tcp-_push() traverses the entire queue of packets, a sin-
gle call on timer callback would suffice to flush all pack-
ets that are ready to be sent.

2. void tcp_retransmit_timer() - This function is in-
voked by TCP when the retransmission timer expires
and flushes the tail of the TCP write queue (i.e., un-
acknowledged packets). Similar to tcp_push(); all the
unacknowledged packets at the time of call are retrans-
mitted. Hence, we track if this function was ever in-
voked while our delay timer was running and invoke
this function once to retransmit all the packets present
in the retransmit window.

3. void tcp_xmit_retransmit_queue() - This function is
invoked by TCP for fast retransmit (i.e. 3 dupacks).
This interception and callback is similar to that of the
previous function.

4. void tcp_send_ack() - This function is invoked every
time TCP needs to send an ACK. Unlike, the previ-
ous functions, this function needs to be invoked ex-
actly once per ACK. In our implementation we track
the number of times this function was called (i.e., the
number of ACKs to be sent) while the delay timer is
running. We then invoke it these many times, once
the delay timer has expired, sending all the ACKs at
once.

The sockets that do not use our flag are set up and man-
aged the same way as if no modifications are present; the
timers or the system calls will not affect them in any way.
The only exception to this is if a regular socket causes a
change in the state of the system that leads to our buffer
flush system call to be fired, in which case a regular socket’s
send causes the packets in the buffered sockets to be sent as
well. This behavior improves performance and reduces the
delay of the packets if the network card is woken up by a
regular, non-delayed socket wanting something sent (which
would be the cause of the invocation of the system call), it

300

"snd_cwnd —+—
snd_ssthresh —se—

250

200

150

100

Segments (cwnd, ssthresh)

50 B

0 L . L . L
0 50 100 150 200 250 300 350 400 450 500

time (seconds)

Figure 1: Bulk transfer over standard TCP (B=20Mbps,
RTT=130ms)

would be logical to also send the buffered packets while the
card is already awake.

6. EVALUATION

For evaluating our implementation, we wrote a simulation
program that provides us with the NIC (Network Interface
Card) behavior interrupts that we are interested in. Based
on the original design of 802.11 PSM [19] the NIC can go to
a low-power (sleep) mode if it has no incoming packets and
no packets in its sending queue. It remains in this state for
an amount of time that equals BeaconPeriod, which is typi-
cally around 100ms. The wireless Access Point (AP) buffers
packets for the NIC while it is sleeping. This sleep could,
however, be interrupted by packets that need to be sent.
Through our evaluation, we inspect the modeled power sav-
ings achieved by applications that specify an upper-bound
on the delay that they can tolerate, to assist our interface
in trading off throughput for power savings.

The key observation here is, that, in static PSM [15], the
NIC has to wake up and synchronize with the AP. This
allows us to send packets for applications with higher delay
tolerance, earlier, offering better throughput and reducing
send message queue length as against waiting for the upper
bound. While the power utilization is expected to increase
from the upper-bound case, it does help in providing a good
balance between throughput and power savings.

6.1 Bulk data transfer

As discussed in [15] while bulk data transfer is happen-
ing over a NIC in PSM, it never goes to sleep and shows
similar characteristics as that of standard 802.11 NIC us-
age. To evaluate this, we configured our NIC simulator to
not send any calls to TCP in the kernel. By not receiving
these signals, our implementation detects that the NIC is
always awake and doesn’t block the TCP output interface.
We performed this evaluation over a 20Mbps link with an
RTT of 130ms. We implemented a sample client and server
similar to iperf [17] wherein the client sends a bulk volume of
messages and the server responds with lightweight acknowl-
edgments. We designed the client to make use of our Socket
flag to configure the delay settings. With the help of TCP

Probe [18] we were able to obtain the segment size, conges-
tion window size and slow-start threshold from the client to
server transfer.

Figure 1 and 2 show similar segment size growth patterns,
except for the portion around ¢ = 60s and ¢t = 150ms, where
the congestion window fell to the slow start threshold and
continued increasing after recovery. We believe that delayed
acknowledgments are responsible for this behavior and the
solution for this is to either snoop at the base station or
modify the server to be aware that the clients are intention-
ally delaying packets for power-savings.

250

snd!cwnd JR—
snd_ssthresh

Segments (cwnd, ssthresh)

0 50 100 150 200 250 300 350 400 450

time (seconds)

Figure 2: Bulk transfer over modified TCP (B = 20Mbps,
RTT = 130ms)

6.2 Bursty transfers and power savings

In the second set of our experiments, we modified the bulk
transfer client to send traffic in bursts (similar to a VoIP
application). The motivation for this was to observe the po-
tential power savings our modification to TCP had to offer,
as bulk transfer has essentially the same power consumption
characteristics as standard TCP. Our payload consisted of
batches of 32 byte packets, with the batch size varying uni-
formly in random between 350 and 400 packets. The work
done in [15] provides the specification for some WiF1i cards.
We designed our model around the interface card listed in
Table 1.

WiFi Interface Card | PSM (Ppsm) | Active (Pactive)

Linksys WCF12 256mW 890mW

Table 1: Interface card configuration

We assumed that the NIC immediately proceeds to PSM
once it is done transferring its payload. Based on this, our
model can be mathematically represented as Equation 1,
where we average out the the number of bytes transferred
corresponding to the delay configuration supplied by the ap-
plication. These are a set of N events that each transfer m.,
bytes of data, generated throughout the entire experiment
duration 7. The link’s bandwidth is B (= 10Mbps) and
tsicep is the time through the entire experiment duration
when the NIC is not active. Ppsp, is the hard lower bound
of power utilization.

Z\‘/nEN (Pacti'ue * %) + Ppsm * tsleep
5 1)

E[Power] =

500

450

400

350

Expected Power (mW)

300

250

25 50 75 100
Delay Configuration

150 Standard

Figure 3: Expected power consumption in bursty transfer.

In our experiments, we refer to the delay passed by the
application using our socket flag as the delay configuration.
We set the delay configurations as 25ms, 50ms, 75ms, 100ms
and 150ms for different experiment runs. Standard indicates
unmodified TCP.

The key observation from Figures 3 and 4 is that signifi-
cant power savings can be achieved from applications with
relaxed QoS requirements by trading off bandwidth for best-
effort synchronization with the NIC’s beacon interval. Fur-
ther analysis of our results are as follows:

1. Delay Configuration = 25ms: This is less than the Bea-
conInterval of the NIC. However, the NIC can remain
asleep for 25ms at a stretch and we observe around
7.67% of power savings

2. Delay Configuration = 50ms: This is less than the
BeaconlInterval of the NIC. However, the NIC can re-
main asleep for 50ms at a stretch and hence we observe
around 24% of power savings

3. Delay Configuration = 75ms: This is again less than
the BeaconInterval and we observe around 30% of power
savings

4. Delay configuration = 100ms: this matches with the
BeaconlInterval of the NIC and forms the upper bound
on the savings that can be achieved. This is because
an active NIC flushes all the active connections with
buffered packets. We observe around 33% of power
savings

5. Delay Configuration = 150ms: The bar plotted in the
figures corresponds to a hypothetical BeaconInterval
value that is > 150ms. In [13], the authors discuss how
increasing the Beaconlnterval adversely affects delay
due to buffering of incoming packets at the AP and
the rareness of the RTT values exceeding 100ms given

the high-bandwidth networks that we have today (i.e.
only propagation delay is the limiting factor). In re-
ality, this bar should be the same as the Delay Con-
figuration of 100ms case, but this was plotted to get
a better idea of the power saving potential by using
longer BeaconIntervals. We observe 37.5% savings in
energy.

The second key observation from our experiments is that
power savings exponentially increase as we increase the con-
figured delay until around 50ms. At this point, we approach
closer to the hard lower bound of Ppsy = 256mW, giving
reduced savings despite higher increase in the configured
delay. From these observations, we believe that the dimin-
ishing power savings do not merit an increase of the Bea-
conlnterval to vales higher than 100ms.

550

450

350

250

Throughput (Kbps)

150

50

25 50 75 100
Delay Configuration

150 Standard

Figure 4: Throughput for each delay configuration.

7. CONCLUSION

Through our work on this project, we have observed the
pursuit in energy efficiency in modern computing devices.
We have then surveyed the literature on what the research
world has done towards this goal. We have thus identified
an area that didn’t see much work performed on and sought
to improve the energy efficiency in this area.

Our work amplified the presence of, along with the ben-
efits, the problems layered approaches bring to the table.
While working towards having common algorithms, used
for all the scenarios present in OS networking environment,
makes implementations adaptable, it is detrimental to cer-
tain use cases. These cases require inter-layer knowledge
and communication.

We seeked to implement a way applications can signal
their delay tolerance to the TCP layer, as well as a way hard-
ware (or other software) can signal the appropriate times for
network communication. Through a very simple cross-layer
signaling mechanism, we have achieved significant power
savings in simple common scenarios.

We believe that our work, while being small in scope,
outlines the potential to improve the status quo through
similar inter-layer approaches. While recognizing the prob-
lems that an inter-layer approach presents (such as not being

hardware-agnostic and needing additional work from appli-
cations), we have identified several benefits of this approach:

e By having a simple, common modification to the Linux
kernel, applications and device drivers can be easily
modified to reap the benefits of our work. Through the
literature we read, one common complaint prevalent in
networking research was the difficulty of modifying ex-
isting network devices and/or deploying modified net-
work devices to real-world networks. We believe that
by only needing very small modifications to applica-
tions (and possibly network device drivers), we can
achieve much faster and wider deployment.

e We believe that our cross-layer approach has the same
trade-off as Domain-Specific Programming Languages
that let go of some ‘completeness’ (applicability to
many problems across many domains) to achieve higher
performance while still being easy to develop with.

Our work can be found on our public GitHub repository?.

8. RELATED WORK

Our initial work focused on studying and improving the
performance of TCP over high-delay (and potentially lossy)
networks like wireless networks. Our preliminary research
led us to the project in its current form[4] [5] [6] [7] [8] [9].
We have observed a higher potential for new research in the
area of improving power efficiency and performance, thus we
have focused our efforts in that direction.

A substantial amount of the work in the field has been
done on improving wireless performance or energy efficiency
through modifications to the link layer. Most of such re-
search went into making link layers more aware of TCP but
we have seen little research that focused on modifying ap-
plications to improve performance or energy efficiency. The
inability to do extensive deployment in networking research
leads us to believe that application-level modifications have
the potential of being deployed much quicker and wider than
link- or transport-layer modifications.

While a number of articles are available on link-layer mod-
ifications to improve wireless performance, [10] contains a
good comparison of various such mechanisms.

Some research focuses on modifications to the power-saving
mode of network interface cards, through wake-up interval
optimizations[11] [12] [13] [14]. While useful, such optimiza-
tions fail to account for arbitrary application behavior and
only deliver a limited amount of energy efficiency. Most of
the gains from the optimization of wake up intervals seem
to be for performance than for energy efficiency.

Another area of research focuses on switching between
different radio modules and multiplexing between them to
improve energy efficiency in wireless communication [15].

One work that is close to our approach is Dogar et al.’s
Catnap [16]. Catnap works by being a proxy in a commu-
nication and delaying transmissions in order to increase the
sleep time between transmissions. This allows the network
card to sleep for longer durations, rather than intermittent
short periods. The Catnap approach is different in key ar-
eas:

1. Catnap is implemented as a separate proxy that in-
tercepts and schedules transmissions. Our approach

https://github.com /sid 1607 /linux-3.14.65-src

https://github.com/sid1607/linux-3.14.65-src
https://github.com/sid1607/linux-3.14.65-src

9.

happens completely in-kernel and there is no middle
entity.

. Catnap is designed to be application independent. Our

approach assumes that the application is in the best
position to know its delay requirements and could com-
municate it, which, in turn, removes the ‘guessing game’
from the equation.

. Catnap decouples the wired and wireless segments of

the communication, being much more hardware-specific
than our implementation. Our approach allows power
savings in every connectivity scenario.

FUTURE WORK

There are a few outstanding problems with our implemen-

tations that require further work:

1. The current implementation schedules timers even if

there are no data to send at any of the custom sock-
ets. This leads to a slowdown due to the unnecessary
traversal and checks of the custom sockets at the timer
intervals.

Future work could involve a smarter timer algorithm
that schedules a timer only when there is data to send.

. Due to the uncertainty in concurrency of the access

to the custom socket list, the list traversal algorithms
employ a [possibly] conservative hand-over-hand lock-
ing algorithm. This requires taking a lock on every
single node, for all of the operations. With a better
specification of the structure of concurrent access to
the sockets in question, the socket traversal algorithms
could be improved and an increase in performance can
possibly be observed.

Future work could involve the study of kernel socket
access mechanism, creation of a stricter access mech-
anism and thus a less conservative approach to socket
list traversal and modification.

. Somewhat related to Item 2 above, the socket list traver-

sal and modification algorithms currently in use take a
long time for simple operations. For example, when a
flush event happens (due to a timeout or system call),
the traversal algorithm goes through each socket and
initiates the push of the sockets’ packets in a blocking
fashion. Therefore, the nodes can stay locked for an
extended period of time and have a negative impact on
the performance of both the kernel and the callee of
the system call. While the work mentioned in Item 2
would help, it wouldn’t solve the entire problem.
Future work could focus on making these events non-
blocking and/or concurrent, so that performance can
be improved.

. Highly related to Item 3 above, the time it takes for

single operations to complete makes it infeasible to
have deadlines smaller than at least a few hundred mil-
liseconds. This leads to somewhat unusable cases for
quite a number of applications that can’t afford more
than approximately a second of delay but could afford
few hundreds of milliseconds. The work on Item 2 and
Item 3 would lead to a substantial increase in the num-
ber of applications that can use our implementation.

10.

1]

. We have implemented our structure for a single kernel

version and tested using a single TCP ‘flavor’, with a
limited set of test scenarios.

Further work could focus on testing our modifications
on a wider range of scenarios, hardwares, applications,
and situations.

In order to get most of the efficiency our implemen-
tation provides, a substantial number of sockets in a
system need to use our custom socket flags and each
application needs to put in an effort to understand
their use and optimize their socket flags accordingly.
Since our implementation completely relies on applica-
tion choices, the benefit our modifications provide go
as far as the applications that use them.

While this situation has been our original aim and
that there is nothing wrong with in in the scope of
our project, future work could focus on ways to auto-
matically and intelligently making such decisions for
arbitrary sockets in the system.

Somewhat apparent, but still an important problem
is the lack of substantial testing of the modifications
against bugs that might have been introduced.
Future work could focus on unit or integration testing
our modifications and fixing bugs.

REFERENCES

Miguel Rio, Mathieu Goutelle, Tom Kelly, Richard
Hughes-Jones, Jean-Philippe Martin-Flatin, and
Yee-Ting Li. A Map of the Networking Code in Linux
kernel 2.4. 20, 2004.

Pasi Sarolahti. Linux TCP. Nokia Research Centre,
2002.

Paul Willmann, Scott Rixner, and Alan L. Cox. An
Evaluation of Network Stack Parallelization Strategies
In Modern Operating Systems. In USENIX Annual
Technical Conference, General Track, pages 91-96,
2006.

Maxim Podlesny. Networking mechanisms for
delay-sensitive applications. 2009.

Doug McCreary, Kang Li, Scott A Watterson, and
David K Lowenthal. TCP-RC: A Receiver-centered
TCP Protocol for Delay-sensitive Applications. In
Electronic Imaging 2005, pages 126—-130. International
Society for Optics and Photonics, 2005.

Ethan Blanton, Kevin Fall, and Mark Allman. A
Conservative Selective Acknowledgment
(SACK)-based Loss Recovery Algorithm for TCP.
2003.

Hari Balakrishnan, Venkata N Padmanabhan,
Srinivasan Seshan, and Randy H Katz. A Comparison
of Mechanisms for Improving TCP Performance Over
Wireless Links. Networking, IEEE/ACM Transactions
on, 5(6):756-769, 1997.

George Xylomenos, George C Polyzos, Petri M&ahonen,
and Mika Saaranen. TCP performance issues over
wireless links. Communications Magazine, IEEE,
39(4):52-58, 2001.

Brian Tierney. TCP Tuning Guide for Distributed
Applications on Wide Area Networks. USENIX €
SAGE Login, 26(1):33-39, 2001.

[10]

[11]

[12]

H. Balakrishnan, V. N. Padmanabhan, S. Seshan, and
R. H. Katz. A Comparison of Mechanisms for
Improving TCP Performance Over Wireless Links.
IEEE/ACM Transactions on Networking,
5(6):756-769, Dec 1997.

A. Agarwal and A. K. Jagannatham. Optimal
Wake-up Scheduling For PSM Delay Minimization In
Mobile Wireless Networks. IEEE Wireless
Communications Letters, 2(4):419-422, August 2013.
Daji Qiao and Kang G Shin. Smart Power-saving
Mode For IEEE 802.11 Wireless LANs. In INFOCOM
2005. 24th Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceedings
IEFEE, volume 3, pages 1573-1583. IEEE, 2005.
Ronny Krashinsky and Hari Balakrishnan. Minimizing
Energy for Wireless Web Access with Bounded
Slowdown. Wireless Networks, 11(1-2):135-148, 2005.
Suman Nath, Zachary Anderson, and Srinivasan
Seshan. Choosing Beacon Periods to Improve
Response Times for Wireless HTTP Clients. In
Proceedings of the second international workshop on
Mobility management € wireless access protocols,
pages 43-50. ACM, 2004.

Trevor Pering, Yuvraj Agarwal, Rajesh Gupta, and
Roy Want. Coolspots: Reducing The Power
Consumption of Wireless Mobile Devices with
Multiple Radio Interfaces. In Proceedings of the 4th
international conference on Mobile systems,

(16]

11.

applications and services, pages 220-232. ACM, 2006.
Fahad R Dogar, Peter Steenkiste, and Konstantina
Papagiannaki. Catnap: exploiting high bandwidth
wireless interfaces to save energy for mobile devices.
In Proceedings of the 8th international conference on
Mobile systems, applications, and services, pages
107-122. ACM, 2010.

Ajay Tirumala, Feng Qin, Jon Dugan, Jim Ferguson,
and Kevin Gibbs. iPerf: The TCP/UDP Bandwidth
Measurement Tool. hitps://iperf.fr, 2005.

Anders Persson, Cesar AC Marcondes, Ling-Jyh
Chen, MY Sanadidi, and Mario Gerla. TCP Probe: A
TCP with Built-in Path Capacity Estimation. In
Proceedings of the 8th IEEE Global Internet
Symposium, 2005.

LAN/MAN Standards Committee et al. ANSI/IEEE
std 802.11: Wireless Lan Medium Access Control
(MAC) and Physical Layer (PHY) Specifications.
IEEE Computer Society, 1999.

ACKNOWLEDGMENTS

The authors would like to thank Prof. Srinivasan Seshan
for his support and guidance on the inception, evolution,
and realization of this project. His knowledge, experience in
the field and enthusiasm was a guiding light.

The authors would also like to thank Junchen Jiang for
his guidance during the development of this project.

	Introduction
	Problem Definition
	Solution Approach
	Simulation
	Layered Approach
	In-TCP Approach

	The Linux Kernel
	Evaluation
	Bulk data transfer
	Bursty transfers and power savings

	Conclusion
	Related Work
	Future Work
	References
	Acknowledgments

